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Abstract. In order to extend the range of application of classical irreversible ther- 
modynamics far from equilibrium, an extension of the Gibbs equation is presented. The 
new Gibbs equation is assumed to contain, besides its usual contributions, supplementary 
terms equal to the thermodynamic fluxes. The entropy flux and the entropy production (ilso 
take more general forms than in classical non-equilibrium thermodynamics. As an illus- 
tration of the formalism, an isotropic viscous and non-isothermal two-fluid mixture is 
considered. The results are shown to be in agreement with the Boltzmann kinetic theory. 

1. Introduction 

It is well known that the classical theory of irreversible thermodynamics (De Groot and 
Mazur 1962, Glansdorff and Prigogine 1971) rests on the local equilibrium hypothesis, 
which states that locally the Gibbs equation remains valid. 

In  classical fluid mechanics, the system is completely described by a kinetic variable, 
the velocity field U, and thermodynamic variables such as the density p and the 
temperature T. The evolution of these variables is described by the balance equations 
of mass, momentum and energy. 

In this work, it is assumed that a knowledge of the system requires supplementary 
variables in addition to U, p and T. These supplementary variables are identified as the 
thermodynamic dissipative fluxes such as the heat flux, the viscous pressure flux, etc; the 
characteristic of these fluxes is to vanish at equilibrium. Of course, in order to 
determine the evolutiorr of these extra variables in time and space, one must establish a 
new set of differential equations involving these new variables. 

In the classical theory of irreversible thermodynamics, and in so-called rational 
thermodynamics, one encounters the same set of dissipative fluxes. They appear indeed 
in the balance equations, but they are expressed in terms of the primitive variables by 
means of phenomenological (classical terminology) or constitutive equations (rational 
thermodynamics terminology). In the classical procedure, the form of the 
phenomenological laws is dictated by the expression of the entropy source; in the 
rational approach, the constitutive equations are guessed from the start. 

In the present work, all the variables-i.e. U, T, p and the fluxes-are put on the 
same level, and our goal is to determine evolution equations for all of them. The 
missing evolution equations for the fluxes are obtained by following the procedure of 
classical thermodynamics. This consists of calculating the expression for the entropy 
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production, which is shown to be of bilinear form in the dissipative fluxes and conjugate 
terms involving the time derivative of the fluxes (called thermodynamics forces). By 
assuming a dependence between these fluxes and forces, one obtains the required 
evolution relations for the fluxes. 

The starting point of the whole procedure is the assumption that the entropy is not 
only a function of the variables at equilibrium, such as internal energy and specific 
volume, but also of the fluxes. Such an extension has been suggested by several authors 
(Muller 1967a, b, Lebon and Lambermont 1976, Israel 1976, Kranys 1977, Gyarmati 
1977, Lebon 1978). The works of Muller, Lebon and Lambermont were particularly 
devoted to the study of simple thermofluid systems, while Israel and Kranys were 
interested in relativistic problems. The purpose of this paper is to give a more general 
description in order to make it directly applicable to a larger class of systems, such as 
mixtures of multicomponents fluids, either charged or not, micropolar fluids, 
superfluids, etc. However, in order to avoid undue lengthy mathematical expressions, 
we restrict our analysis to second-order developments in the fluxes. 

The reasons for going beyond the classical theory of irreversible thermodynamics 
are the following. It is well known that this theory, which rests on the hypothesis of local 
equilibrium (the Gibbs equation), applies essentially to simple linear materials. A large 
class of materials-such as non-Newtonian fluids, viscoelastic bodies and, more 
generally, systems with memory-cannot be coherently described by such a formalism. 

Moreover, as observed by various authors (e.g. Maxwell 1867, Cattaneo 1958, 
Muller 1967a), the classical theory leads to the paradox of an infinite velocity of 
propagation of temperature and concentration signals. To overcome this difficulty and 
to enlarge the domain of validity of classical thermodynamics, many theories have been 
proposed (Coleman 1964, Truesdell 1969, Meixner 1969, Muller 1967a,b, 1971, 
Green and Laws 1972, Day 1972). All of them share the common property of deviating 
radically from classical procedure; in particular, all these theories reject the hypothesis 
of local equilibrium. Our objective is to show how a slight modification of the local 
equilibrium statement allows a description of materials outside the linear range, while 
avoiding the paradox of an infinite propagation of signals. 

Section 2 is devoted to a brief description of the classical theory of irreversible 
thermodynamics. A generalisation is presented in 9 3.  It concerns not only the Gibbs 
equation which receives supplementary terms, but also the entropy flux to which extra 
terms are also ascribed. The formalism proposed in 9 3 is applied to an isotropic 
mixture of two non-charged fluids (8 4). It is determined under which conditions the 
substitution of the parabolic heat conduction equation by the telegraph equation is 
justified. 

The expressions for the generalised Gibbs equation and the entropy flux are shown 
to be in agreement with the kinetic theory of dilute gases. 

The following notation is used. 

aa extensive state variable 

C k ( &  C k  = 1) 

D diffusion coefficient 

concentration of component k 

D’ 

D” 

f 

thermal diffusion coefficient 

Dufour diffusion coefficient 

distribution function 
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Fk 

h 

h k  

1 

J ~ ( &  J~ = 0) 

J S  

k 

P 
P "  

q a ,  qa, qa 
4 

r" 

S 

s k  = T - ' ( h k  - lk )  

T 

U 

V 

U 

U k  

v = $[Vu + (vu)T]  

w ('U - U )  

X" 

r* 

l k  

P k ( = P c  k, 

k k  

A 

P 

U 

cT* 

a( = -PI+ a") 

a U ( = - p U I + a U )  
N 

w 

V 

external force exerted on component k 

specific enthalpy 

partial specific enthalpy of component k 

identity tensor 

flux of diffusion of component k 

entropy flux 

Boltzmann constant 

equilibrium thermodynamic pressure 

viscous pressure 

heat flux vector 

generalised thermodynamic fluxes 

heat supply per unit volume 

specific entropy 

specific entropy of constituent k 
temperature 

specific internal energy 

specific volume 

velocity field 

velocity field of constituent k.  

rate-of-deformation tensor 

diffusion velocity 

generalised thermodynamic force 

intensive state variable 

heat conductivity 

chemical potential 

total mass density 

mass density of component k 

entropy production per unit volume 

source term in the balance laws 

symmetric stress tensor 

symmetric viscous stress tensor 

peculiar velocity of a molecule 

nabla operator. 
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A tilde denotes the deviatory part of a tensor. 
A dot over a symbol denotes the material time derivative. 
A superscript 'T' means transposition. 

2. The classical theory of non-equilibrium thermodynamics 

In classical non-equilibrium thermodynamics, the basic hypothesis is the local equili- 
brium hypothesis. It states that locally the energy depends on the same set of variables 
as in equilibrium and, in particular, that the Gibbs equation 

n 

a = l  
U = Ti+ rea" (2.1) 

remains locally valid. r" represents intensive variables such as the pressure p, the 
chemical potential k k ,  etc. a" represents extensive state variables, such as the specific 
volume U, the concentration c k ,  etc. n is the number of state variables which, besides s, 
are necessary to specify univocally the state of the system. All the quantities refer to 
unit mass. 

The set of variables a' obey balance equations whose general form is 

pa" = -v , q" +on (a = 1, . . . , n ) .  ( 2 . 2 )  
q" is a vectorial flux associated with the variable a", and a" is a source term. If, for 
instance, a" represents the specific volume, -4" must be identified with the velocity 
vector U, while on is zero. By identification of a" with the internal energy U, one obtains 
the energy balance law 

(2.3) pu = -div q .t vu,  

where q is the heat flux and o' the source of internal energy. The balance equation for 
entropy is of particular importance and is expressed as 

p i  = -div J s  +U, (2.4) 

where J s  is the entropy flux and o the entropy production per unit volume. In the 
presence of an internal heat supply, (2.4) is assumed to include a supplementary term of 
the form rJT. 

A straightforward calculation (De Groot and Mazur 1962) shows that the entropy 
flux and the entropy production are respectively given by 

and 
n n 

1 1 
o = q .  grad T-' -1 q a  . V(r"T-l)  + T-loU - T-' 1 I'"v" 

By putting 

(2 .7)  0 o u  r =-I ,  q0 = 4, o =(+,  

(2.5) and (2.6) take a more compact form, namely 
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n n 

0 0 
U = -1 q" . grad (I'"T-') - T-.' c rU5". (2.9) 

It appears that U takes the form of a bilinear expression in the fluxes and conjugate 
terms (called thermodynamic forces): 

m n I 

0 0 0 
c7 = 1 q"X" +c q" . X" +I q" :xu. (2.10) 

q", q", q" denote respectively the scalar, vectorial and second-order tensorial fluxes, 
while X" ,  X" and X" are the conjugate forces. Further, by denoting by J" the set q", 

q", q" and by X "  the set X " ,  X", X", the above expression reduces to 
(1) 

At equilibrium, the J"'s as well as the F a ' s  vanish identically. 
It is known experimentally that the fluxes are functions of the forces, i.e. 

(2.11) 

(2.12) 

Relations between fluxes and forces are termed phenomenological laws. Not too far 
from equilibrium, the fluxes are linear functions of the forces, 

( 1 )  
J" = LayXy ,  

Y 

(2.13) 

where the phenomenological coefficients Lay obey the Onsager-Casimir reciprocal 
relations 

L"'y = * L Y " .  (2.14) 

It is generally admitted that the above results are valid in the vicinity of equilibrium. Far 
from equilibrium, it is clear that Gibbs equation as well as linear phenomenological laws 
are no longer acceptable. In the next section, an extension of the above results to cover 
more general situations is proposed. 

3. A generalised Gibbs equation 

In classical theory, it is supposed that the entropy s is a function of the energy U and 
some extensive variables U" which are non-zero at equilibrium. Now, we make the 
assumption that s depends, in addition, on the thermodynamic fluxes J y :  

s = S(U, U " ,  J" ) .  (3.1) 
The quantities U ,  U" and J y  are those appearing in the field equations of mass, 
momentum and energy and are consequently well defined. However, a difficulty is 
raised with the definition of entropy far from equilibrium. This problem has been 
widely debated in recent years (see e.g. Gal-Or 1974, Domingos et a1 1974), and up to 
now has not received a definite answer. As soon as the hypothesis of local equilibrium is 
relaxed, the existence of a macroscopic entropy which should be a function of the 
macroscopic variables has been questioned (Domingos et a1 1974, ch V). In the present 
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work, we take for granted the existence, outside equilibrium, of an entropy function 
whose production is positive definite. We also undertake to recover the results of 
classical thermodynamics in the local equilibrium range. 

The existence of an entropy far from equilibrium has been postulated in most of the 
theories of continuum thermodynamics (Coleman 1964, Muller 1971, Green and Laws 
1972, Nemat-Nasser 1975). A justification of this attitude can be found in the kinetic 
theory of gases and in statistical theory, wherein the existence of a non-equilibrium 
entropy is also merely accepted. 

Of course, instead of using the entropy s as dependent variable as in (3.1) and U as an 
independent quantity, it is equivalent to interchange the roles of the entropy and the 
energy and to reformulate (3.1) as 

U = U (s, a ", J Y ) .  (3.2) 

The principle of material indifference (Truesdell and No11 1965) requires that the J y ' s  
transform like objective scalars. If this is not the case, adequate combinations of the 
J y  ' s  meeting this criterion will be selected. 

Defining a new state parameter AY by 

( 8 U / d J y ) , , , - , j ~ ' = A Y  ( Y ' f  Y), (3.3) 

the generalised Gibbs equation reads as 

AY and J y  are tensorial quantities of the same order; in particular, J o  will be identified 
with the heat flux q. From (3.4), it is clear that T, r" and A", which are defined by 

T = ( a u / d s ) a a , J Y ,  1'" = (au /aua)S , JY ,a~ ,  ( c Y ' # f f )  

and (3.3), are functions of the whole set of variables s, u n  and J". 

variables contribute also to the entropy flux: 
At this point, an additional assumption is introduced by which the supplementary 

J s  = J s ( q Y ,  q y ,  9"). (3.5) 

In  the linear approximation, the above expression can be written simply as 
m I 

J s  = 2 E y q Y  + 2 LY . qY +% L ". qy 
0 0 0 

wherein the coefficients kY, LY, L" are functions of the intensive variables r" and T. 
Let us now give (3.5) some particular forms valid for isotropic systems. In order to 

avoid unduly lengthy mathematical expressions, we assume that only one symmetric 
second-order tensorial flux q is involved. According to the representation theorems 
(Truesdell and No11 1965), one obtains for J' 

(3.6) 

wherein q31(i = 0, 1 ,2 )  are scalar functions of the intensive variables T and r", the scalar 
fluxes qY and the invariants of qY and q ,  namely tr q, tr(q)2. tr(q)3, q a .  qp,  q " .  q . q', 

0 

4O ' w2 ' qp. 



A n  extension of the local equilibrium hypothesis 28 1 

Up to the second order of approximation in the fluxes, the entropy flux reads as 

J S  = f d;(r", 45, tr q ) q y  +f d:(ra)q q Y .  (3.7) 
0 0 

An equivalent expression is 

In the linear range, (3.8) reduces to the classical form 

Clearly (3.8) represents the simplest and most natural generalisation of (3.9) and will, 
from now on, be used throughout this work. For printing convenience, the next more 
compact expression will be used instead of (3.8), namely 

J s  = -T-' rVqY + 1 bYPJYJP .  
Y Y.5 

(3.10) 

J Y  and J P  may, of course, be of completely different tensorial character. 
As an illustration, let us derive the expression for the entropy flux for a one- 

component viscous fluid. The thermodynamic fluxes are the heat flux vector, the 
viscous pressure p' arid the deviatory stress tensor a", so that 

(3.11) 
N 

J' = J'((p", q, a"). 

Up to second order, the entropy flux reads, according to (3.81, 

J s  = - T - ' q + ~ o ( Z I V ) p " q + ~ l ( T , p ) s . q .  (3.12) 

We now return to the general formalism. The next step is the derivation of the 

Eliminate U between the energy balance (2 .3 )  and the generalised Gibbs equation 
entropy production and the rate of change of the fluxes. 

(3.4). After use of expression (3.10) of the entropy flux, one obtains the relation 

pi = -V . ( -T-' T"q" + 1 bY5JyJ5)  -e q a .  V ( r " T - ' ) - x  T"T- 'aa  
U Y , 5  a a 

-pT-' 1 AYJY+ 1 by5JPVJY  + J Y J P V b Y P .  
Y Y.5 X P  

(3.13) 

The second, third, fourth and fifth terms represent the entropy production, which can be 
expreqsed by 

(3.14) 

arises from the extra terms and is given 

ff = p + p 3 0. 

is the classical contribution (2.9), while 
by 

(3.15) 

For a second-order analysis, it is sufficient to assume that the Ay's are linear 
functions of the J5 ' s :  

pT-'AY = E  c"(T, I'")J5. 
5 

(3.16) 
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Substitution of (3.16) in (3.15) yields, at the second order of approximation, 
( 2 )  

(+(2) = 1 J P  1 ( - c Y s j Y  + b"VJY + J Y V b Y P )  = J p X p 9  (3.17) 

where X P  represents the terms between parentheses and will be termed the generalised 

thermodynamic force. Contrary to the thermodynamic forces XP appearing in the 

classical theory, X P  depends not only on the J"'s but also on their time and space 
derivatives. Gathering the results (2.13) and (3.17) one obtains 

P Y  P 
( 2 )  

(1) 

(2) 

with 

(3.18) 

The entropy production still appears as a bilinear form in generalised fluxes J p  and 
forces X'. As confirmed by experiment and kinetic theory, the fluxes depend generally 
on the forces: 

J p  = J P ( X Y ) .  (3.19) 

In the linear approximation, the phenomenological equations (3.19) reduce to 

(3.20) 

Restrictions on the sign of the phenomenological coefficients are derived by substitu- 
tion of (3.19) in the positive definite entropy production. 

It must be pointed out that the XP's contain time derivatives such as 4 and q which 
are not objective. If objective equations are needed, it is necessary to replace the 
non-objective derivatives by objective derivatives, such as the co-rotational time 
derivative, defined by 

(2) 

q* = q + w .  q, q" = q+w . q-q . w, 
where W is the skew-symmetric spin tensor. 

4. An example: the two-component mixture 

In order to illustrate the above treatment, let us consider an isotropic mixture of two 
chemically inert fluids. 

4.1.  The classical linear situation 

In the classical linear theory of irreversible thermodynamics (De Groot and Mazur 
1962), the Gibbs equation is given by 
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while the entropy flux and the entropy production are respectively 
L 

J s  = T-'q'+ c skJk, 
k = l  

In (4.2) and (4.3), one has introduced a new heat flux q' defined by 
L 

q ' = q -  hkJk 
k = l  

(4.4) 

Index T affecting ( V , u k )  indicates that the corresponding quantity has to be calculated 
at constant temperature. 

Setting fi  = p - k 2 ,  the corresponding linear phenonological laws are 

q i =  - L ~ ~ T - ~ V T - L ~ ' T - ~ [ ( V ~ ~ ) ~ - ( F ~  -F~)], (4.5) 

J' = ( - J ~ )  = - L ' ~ T - ~ V T - L ~ ' T - ~ [ ( V ~ ~ ) ~ - ( F ~ - F ~ ) ] ,  (4.6) 

The phenomenological coefficients are linked to the usual transport coefficients by 
Lq4 = AT-', Lq' 7: ~ C ' C ~ T - ~ ~ ' ' ,  ~ ' 4  = p c T C 2 ~ - 2 ~ ~ ,  

L ' ' = PC2 TDl (a 1 /a  C 1 ) p, T,  

L p p  = T"T, L"" = 277T. 

The Onsager reciprocity relation (L" = L q l )  implies the equality of the diffusion 
coefficients D' and D". 

4.2. The second-order approximatiort 

In addition to the variables s, U and c ' ,  the specific energy is assumed to be a potential 
function of the thermodynamic fluxes: 

U = u(s,  U, c l ,  q' ,  J1, p " ,  a"). (4.9) 
If one defines quantities A, B, C and E by 

the generalised Gibbs equation can be rewritten as: 

U = Ti -pv + f i c  + vA e 4 ' +  vB . j +  u c : 2  + vEp". (4.11) 

Like T, p and L7, the new parameters A, B, C and E are functions of the whole set of 
variables appearing in (4.9). 

The expressions relating T, p ,  f i ,  A, B, C and E to the variables s, v, c, q' ,  J, p ", 2 are 
the state equations. As in classical thermodynamics, they are characteristic of the 
behaviour of the system and must be injected U priori into the theory. By expanding 

f. Since no confusion is possible, the superscript 1 of c and J has been dropped. 
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them around their local equilibrium value, one obtains 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

= ($) 2 + o ( 2 )  E 2a4(s, U, C)U' + 0(2 ) ,  (4.17) 
eq 

E = --y p' + O(2) 2a3(s, V ,  C)P" + 0(2).+ (4.18) 

In accordance with elementary calculus, the mixed second derivatives of U with 

(;PE) eq 

respect to s and p', v and pu, c and p', J and q' are respectively 

(4.19) 

The vanishing of the three first relations results from the property that, at equili- 
brium (i.e. for p' = 0), E and its derivatives with respect to U ,  U and c are equal to zero; 
from the fourth equation follows the reciprocity relation 

a2 = P1. 
After use of (4.15)-(4.19), the Gibbs equation (4.11) takes the form 

~ - - - 
p/,i = TpS -ppV +CLPC +aoq ' .  q ' + a l J .  J + c Y ~ ~ .  J+LY~P'P"+ ~ ~ 4 6 ' .  6.". (4.20) 

The next step is the formulation of the generalised entropy flux. By virtue of (3.6), 

Js = (401 + 412 + 4 2 ~ ' .  U'). q' + ($01 + $12 + &U'. u")J, (4.21) 

where the 4'I's and the qhr's are functions of the variables s (or T), U (or p), c, p' and the 
invariants of U', q' and J. At the second-order approximation, (4.21) reduces to 

J s  = T-lq'+ ( s l  - s 2 ) J  + 2400pUq'+ 24112 .  q '+ 2$00pUJ + 2$112. J, (4.22) 

where q500, $oo, 411 and $11 are functions of the variables s (or T ) ,  U (or p)  and c. The 

its most general expression is 
N N  -- 

t Observe the absenLe in (4.18) of a term independent of p'. This is justified by the local equilibrium 
hypothesis which implies stability. Indeed, since U is a minimum at the local equilibrium value, it must 
necessarily be a quadratic function of the extra variables. This should not be the case if E should involve an 
extra term - a function of s, L' and c only. 



An extension of the local equilibrium hypothesis 285 

quantity q'  x J does not appear in (4.22) since it is an axial vector while J s  is a polar one. 
The factor two has been introduced for convenience. 

The calculation of the entropy production is classical. It consists of determining the 
entropy balance law by inserting the mass and energy balances into the generalised 
Gibbs equation. The source term takes the form 

N N  

cr = 4 ' .  X 4 + J . X J  + p U X P + u L  :xu >o ,  (4.23) 

where the generalised forces are given by 

X4 = -T-'VT -2T-'ao4' + T- ' a 2 j + 2 .  Vq511 +2411V . z+puVq500+ 2400Vp", 

XJ = T-'[(V,u)T + F2 - F'] +2a1 T-2 j+  a2T-24 ' - -7 .  V$11 

(4.24) 

N 

-2*11v * uL -PLv*oo-2*oovpu, (4.25) 

X p  = - T-'V . o - 21x3 T-'p"+ 2400V . q' + 2$0oV . J + 4' . V&O + J .  V$oo, (4.26) 

x u  = T-'T-2a4T ' ~ + 2 ~ ~ ~ ( v q ' ) + 2 ~ i i ( v J ) + ( q ' v ~ i i ) + ( J v $ i i ) .  (4.27) 

The brackets stand for the symmetric part of the deviatory part of the corresponding 
tensor. Observe that the above forces are linear in the fluxes and in their time and 

Although the q' ,  J, p' and U' transform as objective quantities, this property is not 
met by their conjugated forces because of the presence of the material time derivatives. 
This difficulty is overcome by observing that one has 

N 

spatial derivatives. N 

-- ,--A 
q 4 = q 4, J . j =  J . $  uu : au = uu : uL, 

where the upper asterisk means the co-rotational objective time derivative. Substitut- 
ing these results in expression (4.23) for the entropy production shows that expressions 
(4.24)-(4.27) remain unchanged by replacing the material by the co-rotational time 
derivative. 

The final step is the establishment of the phenomenological laws. Therefore, it is 
assumed that the fluxes are functions of the whole set of forces, namely 

(4.28) q' = q'(X9, xJ, X P ,  F), - 
with similar expressions for J, p "  and a". 

Clearly, such phenomenologig laws are evolution equations, since they involve the 
time derivatives of q' ,  J, p' and U" through the expressions of the generalised forces. 

Since all the previous developments have been limited to second order, it is logical to 
formulate the set of phenomenological equations at the same order of approximation. 
With the representation theorem of isotropic tensors, one obtains 

q' = ( q o l +  VIZ) . X4 + ( 9 2 1  t (4.29) 

J =  (q4l+q\~s%) . x q + ( q 6 1 + q 7 F )  . x '+O(3) ,  (4.30) 

p "  = q 8 9  (4.31) 

(4.32) 

The sefficients qt are functions of the scalars T, p ,  c, X p  and the invariants of X q ,  
XJ and X u  ; they must be determined by experiment or calculated by the kinetic theory. 

. X J  + 0(3), ,  

N - N  

uL = V 1 9 1 + * 1 O 5 F + ~ ' 1 X L .  X" +q12(qfJ+Jq' )+q'3(4 'q ' )+\I114(JJ) .  
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The most general form of $,, limited to second order, is given by 

9, = W p  + p x p  + ? P : 2 ) ( x p ) 2  + $:3’xq * xq + W : 4 ” x J ,  xJ 
i - ~ j * ’ x ~ .  xJ C W ~ ~ ’  tr (x‘ . x“). 

-- h 

(4.33) 

In (4.33), the T!’)’s depend only on the intensive variables T, p and c. Restrictions on 
the sign of the coefficients 9:’ are derived by inserting the laws (4.29)--(4.32) into the 
expression for the entropy production and imposing the condition that the latter 
quantity be positive definite. 

In the linear approximation, the equations (4.29)-(4.32) become simply 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

These relations contain as a particular case the classical stationary expressions (4.5)- 
(4.8). In accordance with Onsager’s reciprocity theorem, one has 9 p )  = Wk”. 

4.3. A simplified problem heat conduction in a rigid body 

In the particular case of heat conduction in an isotropic rigid body ( J  = p ”  = a“ = 0), the 
phenomenological law (4.29) reduces to 

N 

4 ‘POX‘ + O(3). (4.38) 

Identifying lPoT-2 with A, the heat conductivity, and using the explicit expression (4.24) 
of X q ,  one obtains, up to order two, 

4 = -A (V T + 2 T ~ o 4 ) .  (4.39) 

- -  4 -2TAa0, (4.40) 

Defining a relaxation time T by 

one recovers the Maxwell-Cattaneo form (Maxwell 1867, Cattaneo 1958) of the 
generalised Fourier law, namely 

(4.41) 

In the literature (e.g. Vernotte 1958, Chester 1963, Swenson 1978, Sieniutycz 

pu = -V .q,  (4.42) 

4 = -AV T - 74. 

197’7), it is customary to combine (4.41) with the first law 

where 

ti =cT, (4.43) 

to obtain the hyperbolic heat conduction equation 

~ c T P + ~ c T = A v  .VT. (4.44) 

In (4.44), c denotes the specific heat which, like T and A, is assumed to be positive and 
constant. 
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In our opinion, this procedure is not generally justified as it mixes a relation like the 
Maxwell-Cattaneo law, which was obtained from a second-order Gibbs equation, with 
a state equation like (4.43), which is a direct consequence of the classical first-order 
Gibbs equation. Therefore, equation (4.44) can only be valid under some restrictions. 
These are obtained by determining under which conditions the generalised Gibbs 
equation 

li = Ti + V a o q .  4 (4.45) 

leads consistently to the state equation (4.43). Expression (4.45) can still be written as 

(4.46) 

From the equality of the mixed partial derivatives of the Helmholtz free energy U - Ts, 
it is seen that 

-($)T = 4.3) 9 

Putting 

(4.46) reads 

U =C,?:+V((Yo-Ta,T)(I . ( i .  

This expression reduces to the usual relation (4.43) under the condition that either 
second-order terms are omitted or that the following relation is fulfilled: 

(YO - Tu,T = 0. 

This implies that a. is proportional to T, or from the definition (4.40) of T ,  that A 
behaves like r / T 2 .  

4.4. Comparison with the kinetic theory 

The expressions (4.20) and (4.22) of the generalised Gibbs equation and the entropy 
flux can be justified by the Boltzmann kinetic theory of dilute gases. This is done by 
expanding the distribution function f’, associated with the component j of the mixture, 
around the local equilibrium value fLq : 

f’ = Eq (1 + f { l )  +f{2) + . . .) (Enskog development). (4.47) 

and f ( 2 ,  are respectively the first- and second-order approximation functions and 
are calculated in every textbook on kinetic theory. For future purpose, we need the 
expression of f ( l )  given by (Chapman and Cowling 1970) 

fj1) = A’wi .VT  + B’w’w’ :V+ C’V . v + D’w’. d’. (4.48) 

a’ denotes the peculiar velocity of the molecules of component j ,  the coefficients A’ up 
to D’ are scalar functions of U ’ .  U’, while d’ stands for d’ = p-l(Vp’ -p i l i ” ) .  
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According to kinetic theory, the specific eritropy and the entropy flux are defined by 

ps = - k  1 

J s  = - k  5 w’fl(ln f’ - 1) dw’. 

f’(1n f1 - 1) dw’, 
1 

I 

(4.49) 

(4.50) 

Making use of the kinetic definitions of J’, q’ ,  p u ,  7 and substituting (4.48) in the 
above expressions of s and J‘ ,  one obtains for a two-component mixture 

(4.51) 

(4.54) 

(4.55) 

(4.56) 

The coefficient a,, 9,’ and q5tl are complicated functions of feq and w k  (Jou 1978), while 
q;lj7 are expressed by (4.5)-(4.8). For a mixture of rigid spherical 
molecules for which the bulk viscosity vanishes, the above coefficients take the form 

py1) and 

and 

where the g, and h, are polynomial functions of the partial densities of the components. 
By differentiation of (4.53) with respect to time, while keeping the coefficients 

constant, it is seen that the presence of the extra terms in the Gibbs equation (4.11) is 
indeed corroborated by the kinetic theory of dilute gases. The agreement between the 
kinetic and the macroscopic expressions (4.56) and (4.22) of the entropy flux is also 
complete. 

In the sarne way, the phenomenological laws (4.34)-(4.37) have been compared 
(Jou 1978) with the Burnett equations of the kinetic theory of gases (Chapman and 
Cowling 1970). It was seen that all the terms present in Burnett’s relations are 
recovered in our proposed equations. The analysis is lengthy, but similar to that 
presented by Lebon (1978) for a one-component fluid, and will not be repeated here. 

5. Conclusions 

The present wark is aimed at generalising the classical theory of irreversible ther- 
modynamics outside the linear range. This objective is achieved in three steps. 
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Firstly, it is assumed that the internal energy (or the entropy) depends in addition to 
the usual variables (temperature, pressure, concentrations) on the thermodynamic 
fluxes, namely the heat flux, the diffusion flux, etc. 

The second step consists of expressing the entropy flux as a function of the same set 
of thermodynamic fluxes. 

In a third step, evolution equations for the extra variables are determined. The form 
of these differential equations is suggested by the expression for entropy production. 
The latter appears in a bilinear form in the fluxes and some factor involving their time 
derivatives, which are termed forces. The existence of such evolution relations has been 
confirmed empirically and theoretically by the kinetic theory of gases. 

As an illustration, a two-component isotropic mixture has been considered. Explicit 
expressions have been derived for the generalised Gibbs equation, the entropy flux and 
the evolution equations for the fluxes up to the second-order approximation in the 
fluxes. 

Our formalism clearly goes beyond the local equilibrium hypothesis, which is the 
keystone of the classical theories of non-equilibrium thermodynamics. It differs also 
from rational thermodynamics and Gyarmati’s formalisms wherein the entropy flux is 
still taken to be equal to its classical value (2.8). Our approach also generalises Muller’s 
(1967) work, where the analysis was limited to one-component fluids with linear 
phenomenological laws between fluxes and forces. Moreover, Muller kept the 
coefficients c#J~, in the entropy flux constant and did not take into account the objectivity 
principle. It must also be observed that the difficulties raised by the parabolic character 
of the diffusion equation is now overcome. 

In our opinion, the interest of our formalism is that it reduces at the maximum the ad 
hoc hypotheses. Truly, only one fundamental assumption is needed: Lamely that the 
Gibbs equation involves extra terms in the fluxes, and the number and the nature of 
these fluxes are dictated by the nature of the system under consideration. Starting from 
this hypothesis, the proposed procedure leads naturally to the extra equations required 
to describe the system unequivocally by using invariance requirements and represen- 
tation theorems. Moreover, nowhere are hidden variables introduced whose physical 
meaning is not clearly established. 

The approach presented in this work is general and can be applied as well to charged 
systems (Jou 1978) and to micropolar media (Rubi 1979). 
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